Discussion:
OT true - Most Habitable Earth-Like Planets May Be Waterworlds
Add Reply
a425couple
2017-04-21 02:36:21 UTC
Reply
Permalink
Raw Message
Most Habitable Earth-Like Planets May Be Waterworlds
George Dvorsky Today 3:00pm

(Plenty of interesting graphics & some videos at the citation.)

Over 70 percent of our planet is covered in water, and we tend to think that’s
a lot. A new study suggests that our world is special in this regard, and
that most habitable planets are dominated by oceans that consume over 90
percent their surface area. That may be good for primitive marine life, but
not so good for aspiring civilizations.

A new study published in The Monthly Notices of the Royal Astronomical
Society suggests that most habitable planets are wet. Like, extremely wet.
Using computer models, astronomer Fergus Simpson from the Institute of
Cosmos Science at the University of Barcelona found that habitable
exoplanets, at least simulated ones, tend to be overrun by water, in most
cases accounting for 90 percent or more of the total surface area.

This finding suggests that Earth, with its vast land masses, is unique in
the cosmological scheme of things, and that our planetary twin may be harder
to find than we thought. What’s more, it may explain why we’ve never made
contact with an extraterrestrial intelligence—a conclusion that feeds into
the Rare Earth Hypothesis, the idea that Earth-like planets containing
complex life are exceptionally rare in the Universe.
This USGS picture shows the size of a sphere that would contain all of Earth’s
water in comparison to the size of the Earth. It may not seem like much, but
our planet is relatively flat, so a little goes a long way. (Image: USGS)

As Simpson notes in his new study, a planet must strike a certain balance if
it is to host both extensive land masses and large oceans. Factors
controlling this balance include the amount of water on the surface of a
planet, the space available to store it, and the presence of dynamic
topographical features—from vast ocean basins through to mountain ranges. If
the oceans are relatively shallow, and the land altitudes low, the excess
water will consume the vast majority of a planet’s surface. Here on Earth,
the global topography allows for approximately 29 percent of our planet’s
surface area to remain above water. Over the eons, this ratio has remained
relatively stable allowing for the emergence of complex terrestrial animals
such as ourselves.

Simpson’s new study suggests that Earth is an outlier in this regard, and
that most terrestrial planets locked within its host star’s habitable zone
(i.e. that cozy niche where liquid water can be retained at the surface) are
waterworlds. But if we take a closer look at our planet, we’re actually not
too far removed from being completely drenched in water ourselves. As the
animation below shows, only a narrow window exists in which large areas of
both land and water are present. Consequently, and as Simpson points out in
his new study, habitable exoplanets tend to be dominated by water or land.

At least in theory. Simpson’s models aren’t based on observations made of
real exoplanets, and are instead best guesses of planetary formation and how
much water we can expect to find on these hypothetical worlds.

“I’m a bit puzzled about this paper,” said astrophysicist Sean N. Raymond,
who wasn’t involved with the study, in an interview with Gizmodo. “I find
studies that extrapolate from N=1 to be interesting but hard to interpret.
In this case, there are plenty of unanswered—but relevant questions.”
Most of Earth’s water came via asteroids and comets. (Image: Mark A.
Garlick/space-art.co.uk/University of Warwick/University of Cambridge).

Indeed, the question of how planets get their water is still a matter of
contention. The prevailing theory is that most of Earth’s water was
delivered by asteroids and comets. If that’s the case, then it’s nearly
impossible to predict the quantity of water on any given planet. In order
for us to be certain, we’d need to know the average amount of water
delivered to a planet of our size and location. But every star system is
different, featuring varying amounts of asteroids, comets, and water, not to
mention neighboring planets that are also sopping up water from the heavens.

“In the ‘classical model’ of terrestrial planet formation, water delivery to
Earth is very [random] so it’s reasonable to imagine alternate Earths with
over ten times more water,” said Raymond. “However, in our newer models much
less water is delivered but the delivery is more reliable.”

What Raymond is talking about is the observation that the inner solar system
is water poor, while the outer system is water-rich.

“Water worlds are always beyond what we call the ‘snow line’,” Adam
Sarafian, a graduate student at MIT’s Earth, Atmospheric, and Planetary
Sciences department, told Gizmodo. “The snow line existed in the very early
Solar System before planets formed. Beyond the line, water could condense as
ice, so the bodies in the outer solar system are water rich and the inner
solar system bodies are water poor. So we would expect water worlds to exist
in the outer solar system and relatively dry planets in the inner solar
system.”

Sarafian, who wasn’t involved with the new study, is currently trying to
figure out why Earth has so much water and when it got here.

“Recent evidence suggests the inner solar system was likely seeded with
plenty of water very early, such that Mars could have looked just like Earth
(partly waterworld) soon after it formed,” said Sarafian. “One advantage of
looking at planets closer to the Sun, which wouldn’t allow them to be water
worlds (because of the snow line) is that the sun provides a lot of energy
for life and would allow liquid water on the surface, as opposed to ice.”

Sarafian believes that Simpson’s new study is part of this larger
conversation, which is mostly speculation about the best places to look for
life.
Waterworld was a shitty movie, but at least it got the science right.

But there are other factors to consider than how Earth got its water, such
as how the ocean’s depths are regulated by interactions between the deep
ocean and Earth’s mantle. For example, Earth may be unique in that it
features unusually deep water basins. More research will be required to
determine if this is the case.

Simpson himself factored in some of these effects, and had his test model
account for the deep water cycle, erosion, and deposition processes (i.e.
the process in which sediments, soil, and rocks are added to a land mass).
Despite this, he still found that water is be a prevailing surface feature
in most cases. Interestingly, he found that planets with small oceans
feature land masses dominated by deserts. Also, large Earth-like planets are
almost guaranteed to be waterworlds.

“Larger planets are thought to be more prone to flooding for two reasons,”
Simpson told Gizmodo. “One is that if they have the same composition
(percentage of water by mass) then their oceans are deeper. The second is
that their higher surface gravity makes it harder to have such large surface
perturbations [dynamic topological features].”
Article preview thumbnail
What a Habitable Planet Twice the Size of Earth Would Be Like

To date, astronomers have catalogued over 1,000 exoplanets — some of them
rocky and parked within…
Read more on io9.​gizmodo.​com

If Simpson’s conclusions are valid, then it means our planet has struck a
fine balance between land and ocean—an observation that may help to explain
why our civilization emerged on Earth (despite what some might say, it is
highly unlikely that a high-tech, industrial-scale civilization can develop
on a world consumed by water). And in fact, Simpson says that anthropic
selection effects are at work. That’s a fancy way of saying that Earth is a
freaky planet, because if it wasn’t freaky, we wouldn’t be here to see it.

The trouble with the Anthropic Principle, of course, is that it’s
untestable. But thankfully, this new waterworld theory is.

“The exciting aspect is that we may not be too far from measuring the
atmospheric composition of terrestrial exoplanets,” said Simpson. Indeed,
with the next generation of telescopes, including those situated in space,
we’ll be able to scan the atmospheres of exoplanets to determine how much
water might be on the surface.

In addition, scientists will need to figure out the various ways in which
our planet is an oddball, and why. Until then, let’s celebrate the fact that
Earth is a weirdo of the Milky Way.

http://gizmodo.com/most-habitable-earth-like-planets-may-be-waterworlds-1794500308
a425couple
2017-04-21 02:47:38 UTC
Reply
Permalink
Raw Message
Post by a425couple
Most Habitable Earth-Like Planets May Be Waterworlds
George Dvorsky Today 3:00pm
(Plenty of interesting graphics & some videos at the citation.)
Over 70 percent of our planet is covered in water, and we tend to think
that’s a lot. A new study suggests that our world is special in this
regard, and that most habitable planets are dominated by oceans that
consume over 90 percent their surface area. That may be good for primitive
marine life, but not so good for aspiring civilizations.
http://gizmodo.com/most-habitable-earth-like-planets-may-be-waterworlds-1794500308
About the first comment on that story was the old,,:
"Brigit
George Dvorsky
4/20/17 4:13pm
Why would a mostly waterworks stop advanced intelligence? It might make
advanced civilization more difficult but intelligence and civilization ate
technically seperate.

Honestly I think the problem is evolution to get humans was a lot of random
flukes.

If we assume life started 3.5bish years ago we had single celled life forms
only til around 600 million years ago. Then we get the start of our line
around 7 million years ago. Civilization as we know it then starts around 14
thousand tests ago.

That said there are tons of animals that are smart by non human standards
dolphins octopodes elephants etc.

And all of this assumes DNA rather than RNA based life which I think wouldn’t
get multicellular (someone with more biology than me please correct if I’m
wrong)

All that said this study looks like a good start."
----------------------------
IIRC, Arthur Clarke goes into that some in his book,
"Songs of Distant Earth" and other books of his
(2001, 2010 -- ).
I'll try to get back again before too long.

But, basicly, it is hard to advance far in technology without fire.
It is hard to advance far in scholarship without written literature.
Thus, those that weed, gave up on the life forms under the
ice on Europa.
Bill Gill
2017-04-21 12:58:04 UTC
Reply
Permalink
Raw Message
Post by a425couple
Most Habitable Earth-Like Planets May Be Waterworlds
George Dvorsky Today 3:00pm
Well, based on the current state of our knowledge of
how planetary development and the development of life
work I don't have much faith in any of this sort of prediction.

Bill
a425couple
2017-04-21 18:59:20 UTC
Reply
Permalink
Raw Message
Post by Bill Gill
Post by a425couple
Most Habitable Earth-Like Planets May Be Waterworlds
George Dvorsky Today 3:00pm
Well, based on the current state of our knowledge of
how planetary development and the development of life
work I don't have much faith in any of this sort of prediction.
Bill
The 'regular' announcements and predictions,
do seem a bit 'eratic'. So, yeah.

Loading...